Model-Free Control of Multiphase Interleaved Boost Converter for Fuel Cell/Reformer Power Generation

2019 
Fundamentally, a fuel cell (FC) power source is connected with a power switching dc/dc converter. This type of network is a nonlinear manner. A linearized approach is frequently employed to investigate the convergence issue and to set the regulation parameters. In this document, a model-free control (MFC) theory based on the ultra-local model is studied to control the FC power for dc microgrid applications. A proposed parallel 2-phase boost converter with interleaving algorithm is selected to step-up a low output dc voltage of fuel cell to a utilized dc grid level. Using the MFC approach, we put forward simple solutions to nonlinear control problems in power electronics domain. To corroborate the proposed scheme, a dc/dc power converter (2.5-kW two-modules in parallel) is implemented in the laboratory. The studied control law based on the MFC characteristic is realized by fully digital calculation in a dSPACE MicroLabBox platform. Simulation and experimental results with a FC (2.5 kW, 50 V) with hydrogen supplied by a reformer reactor of in the laboratory substantiate the exceptional control scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    6
    Citations
    NaN
    KQI
    []