Exploring the Ti-5553 phase transformations utilizing in-situ high-temperature laser-scanning confocal microscopy

2019 
Abstract Recently, the β metastable Ti-5553 alloy has attracted significant interest owing to the possibility of achieving excellent mechanical properties. In this study, for the first time, the Ti-5553 phase transformations were investigated using high-temperature laser-scanning confocal microscopy (HT-LSCM). During a continuous heating of an aged sample, the α phase dissolution was not clearly visible owing to the remaining grooves of former grain and interphase boundaries. However, a continuous cooling from the β field showed that the α phase precipitation started preferentially at grain boundaries. With the increase in cooling rate, the α precipitates became more refined and the supercooling necessary to promote allotriomorphic precipitation increased. At a cooling rate of 100 °C min−1, no α phase was observed in the analyzed field of view. A higher oxygen content was suggested to contribute to the microstructural differences between the free surface and bulk. The volume fraction of the α phase was lower than that obtained on the original surface at cooling rates of 5, 25, and 50 °C min−1, while only minor differences were observed at cooling rates of 100 and 250 °C min−1. The α phase precipitation was analyzed in detail. The HT-LSCM technique can be a useful method for the analyses of solid-state phase transformations in Ti alloys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []