A vacuolar glucoamylase, Sga1, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae

2010 
Nutrient limitation acts as a trigger for the synthesis of glycogen, which serves as a carbon and energy reserve during starvation. Recently, we reported that an autophagy-deficient mutant (atg8Δ) shows severe reduction in aerial hyphal growth and conidiation in the rice-blast fungus Magnaporthe oryzae, and proposed that autophagy plays an important role in facilitating glycogen homeostasis to ensure proper asexual differentiation in Magnaporthe. Here, we identify and characterize a vacuolar glucoamylase function (Sga1) that hydrolyses glycogen to meet the energy requirements during asexual development in Magnaporthe. Loss of SGA1 resulted in significant reduction in conidiation compared to the wild-type Magnaporthe strain. More importantly, an sga1Δ atg8Δ double deletion mutant showed further reduction in conidiation compared to the atg8Δ mutant in Magnaporthe. Forced localization of GFP-Sga1 to the cytoplasm (through removal of the predicted signal peptide) led to increased conidiation in wild type and ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []