An entropy structure preserving space-time Galerkin method for cross-diffusion systems.

2020 
Cross-diffusion systems are systems of nonlinear parabolic partial differential equations that are used to describe dynamical processes in several application, including chemical concentrations and cell biology. We present a space-time approach to the proof of existence of bounded weak solutions of cross-diffusion systems, making use of the system entropy to examine long-term behavior and to show that the solution is nonnegative, even when a maximum principle is not available. This approach naturally gives rise to a novel space-time Galerkin method for the numerical approximation of cross-diffusion systems that conserves their entropy structure. We prove existence and convergence of the discrete solutions, and present numerical results for the porous medium, the Fisher-KPP, and the Maxwell-Stefan problem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []