Anelastic Behavior of Small Dimensioned Aluminum

2019 
In the present research, results are presented regarding the anelasticity of 99.999% pure aluminum thin films, either deposited on silica substrates or as free-standing sheets obtained by cold rolling. Mechanical Spectroscopy (MS) tests, namely measurements of dynamic modulus and damping vs. temperature, were performed using a vibrating reed analyzer under vacuum. The damping vs. temperature curves of deposited films exhibit two peaks which tend to merge into a single peak as the specimen thickness increases above 0.2 µm. The thermally activated anelastic relaxation processes observed on free-standing films are strongly dependent on film thickness, and below a critical value of about 20 µm two anelastic relaxation peaks can be observed; both their activation energy and relaxation strength are affected by film thickness. These results, together with those observed on bulk specimens, are indicative of specific dislocation and grain boundary dynamics, constrained by the critical values of the ratio of film thickness to grain size.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    4
    Citations
    NaN
    KQI
    []