Passivity-Based Robust Control Against Quantified False Data Injection Attacks in Cyber-Physical Systems

2021 
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems (CPSs). False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals. For quantified false data injection attacks, this paper establishes an effective defense framework from the energy conversion perspective. Then, we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks. The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection. Moreover, with the $L_{2}$ disturbance attenuation technique, the burden of control system design is simplified because there is no need to design an attack observer. In addition, this secure control method is simple to implement because it avoids complicated mathematical operations. The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []