Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites Thermal and mechanical characterization

2016 
Vapor-grown carbon nanofiber (CNF)-modified soy polyol-based polyurethane (PU) nanocomposites with different hydroxyl value of polyols (OH) were synthesized. The glass transition, thermal stability, mechanical properties, and morphology of the PU nanocomposites were characterized through differential scanning calorimetry, thermogravimetry, universal test machine, and scanning electron microscopy. The addition of CNFs increased the glass transition temperature as well as significantly improved tensile strength and Young’s modulus of PU nanocomposites. Meanwhile, thermal and mechanical properties of PU composites were influenced by the different hydroxyl value of polyols due to those different structures. In particular, in the case of 2 mass% CNF addition in PU derived from soy polyol with the OH number of 164 mg KOH g−1, 20.8 °C improvement in the glass transition temperature, 115 % increment in tensile strength, and nearly eightfold increase in Young’s modulus were obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    17
    Citations
    NaN
    KQI
    []