A chitosan-polypyrrole magnetic nanocomposite as μ-sorbent for isolation of naproxen.

2014 
Abstract An extracting medium based on chitosan–polypyrrole (CS–PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS–PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS–PPy magnetic nanocomposite was compared with the CS-MNPs and Fe 3 O 4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS–PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS–PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS–PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04–10 μg mL −1 ( R 2  = 0.9996) was obtained. The limits of detection (3S b ) and limits of quantification (10S b ) of the method were 0.015 and 0.04 μg mL −1 ( n =  3), respectively. The relative standard deviation for water sample spiked with 0.1 μg mL −1 of naproxen was 3% ( n =  5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56–99%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    65
    Citations
    NaN
    KQI
    []