Optical properties of vacancies in thermochemically reduced Mg-doped sapphire single crystals

2007 
Optical absorption and emission experiments were used to characterize defects and defect aggregates in Mg-doped Al2O3 crystals due to thermochemical reduction at high temperatures. Oxygen vacancies and higher-order defects are produced much more readily in Mg-doped than in undoped Al2O3 crystals. F+ and F centers (oxygen vacancies with one or two electrons, respectively) were monitored by their optical absorption bands at about 4.8 and 6.0eV, respectively. In contrast with undoped crystals, where the reduction produces primarily F centers and a small amount of F+ centers, in Mg-doped crystals both F and F+ centers are created in comparable concentrations. These thermally generated F and F+ centers are much more stable than those produced in undoped crystals irradiated with neutrons. Clustering of individual oxygen vacancies forming higher-order defects, such as anion divacancy F22+ and F2+ centers, was investigated by low temperature absorption and luminescence experiments, in conjunction with UV irradiat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    34
    Citations
    NaN
    KQI
    []