Computing the log-determinant of symmetric, diagonally dominant matrices in near-linear time.

2014 
We present new algorithms for computing the log-determinant of symmetric, diagonally dominant matrices. Existing algorithms run with cubic complexity with respect to the size of the matrix in the worst case. Our algorithm computes an approximation of the log-determinant in time near-linear with respect to the number of non-zero entries and with high probability. This algorithm builds upon the utra-sparsifiers introduced by Spielman and Teng for Laplacian matrices and ultimately uses their refined versions introduced by Koutis, Miller and Peng in the context of solving linear systems. We also present simpler algorithms that compute upper and lower bounds and that may be of more immediate practical interest.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    9
    Citations
    NaN
    KQI
    []