Approximate quantum fractional revival in paths and cycles

2020 
We initiate the study of approximate quantum fractional revival in graphs, a generalization of pretty good quantum state transfer in graphs. We give a complete characterization of approximate fractional revival in a graph in terms of the eigenvalues and eigenvectors of the adjacency matrix of a graph. This characterization follows from a lemma due to Kronecker on Diophantine approximation, and is similar to the spectral characterization of pretty good state transfer in graphs. Using this, we give a complete characterizations of when approximate fractional revival can occur in paths and in cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []