A simple, powerful diode laser system for atomic physics.
2021
External-cavity diode lasers are ubiquitous in atomic physics and a wide variety of other scientific disciplines, due to their excellent affordability, coherence length and versatility. However, for higher power applications, the combination of seed lasers, injection-locking and amplifiers can rapidly become expensive and complex. Here we present a useful, high-power, single-diode laser design with specifications: $>210\,$mW, $100\,$ms-linewidth ($427 \pm 7$) kHz, $>99\%$ mode purity, $10\,$GHz mode-hop-free tuning range and $12\,$nm coarse tuning. Simple methods are outlined to determine the spectral purity and linewidth with minimal additional infrastructure. The laser has sufficient power to collect $10^{10}$ $^{87}$Rb atoms in a single-chamber vapour-loaded magneto-optical trap. With appropriate diodes and feedback, the system could be easily adapted to other atomic species and laser formats.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
56
References
0
Citations
NaN
KQI