Modelling of parametric excitation of a flexible coupling–rotor system due to misalignment:

2011 
A flexible diaphragm coupling, connecting two rotating shafts, is investigated for its dynamic characteristics, when subjected to parallel offset misalignment. The diaphragm coupling is a constant velocity coupling which becomes asymmetric once misaligned. Asymmetry creates directional difference or spatial variation of stiffness, as shown by a quasi-static finite element (FE) analysis using ABAQUS software. As the shafts rotate, this spatial variation in stiffness makes the diaphragm coupling–rotor system model to become time-varying. The time-varying direct and cross–coupled stiffness terms of the coupling are synthesized from the FE model and used in the governing equations of motion of the coupling–rotor system. This leads to a parametrically excited system due to the time-periodic stiffness coefficients of the coupling. Using Simulink, numerical integration has been performed to find the response of the system for both mass unbalance and inclination unbalance excitations that arise due to the tilt of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    10
    Citations
    NaN
    KQI
    []