Effects of SiO 2 hard masks on si nanophotonic waveguide loss for photonic device integration

2014 
As the basic building block for photonic device integration, silicon nanophotonic waveguide requires low-loss propagation for high-performance ultra-compact photonic device. We experimentally study silicon dioxide hard masks grown by two different methods, i.e., thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD) for silicon nano-waveguides fabrication and their effects on the propagation loss. It is found that the denser and smoother quality of thermally grown silicon dioxide increases the etch selectivity against silicon and reduces the line edge roughness transferred to the silicon nano-waveguide sidewalls, hence resulting in a lower loss as compared with the PECVD silicon dioxide hard mask. With thermally grown silicon dioxide as a hard mask, the silicon nano-waveguides loss can be halved for a 650-nm-wide nano-waveguide, and the loss is comparable with a waveguide fabricated with a resist etch mask.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []