Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development.

2014 
Epigenetic and transcriptional control of gene expression must be coordinated in response to external signals to promote alternative multicellular developmental programs. The membrane-associated trimeric complex VapA-VipC-VapB controls a signal transduction pathway for fungal differentiation. The VipC-VapB methyltransferases are tethered to the membrane by the FYVE-like zinc finger protein VapA, allowing the nuclear VelB-VeA-LaeA complex to activate transcription for sexual development. Once the release from VapA is triggered, VipC-VapB is transported into the nucleus. VipC-VapB physically interacts with VeA and reduces its nuclear import and protein stability, thereby reducing the nuclear VelB-VeA-LaeA complex. Nuclear VapB methyltransferase diminishes the establishment of facultative heterochromatin by decreasing histone 3 lysine 9 trimethylation (H3K9me3). This favors activation of the regulatory genes brlA and abaA, which promote the asexual program. The VapA-VipC-VapB methyltransferase pathway combines control of nuclear import and stability of transcription factors with histone modification to foster appropriate differentiation responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    49
    Citations
    NaN
    KQI
    []