Identification of most preferable reaction pathways for chloride depletion from size segregated sea-salt aerosols: A study over high altitude Himalaya, tropical urban metropolis and tropical coastal mangrove forest in eastern India

2020 
Abstract Depletion of chloride from sea-salt aerosols affects their hygroscopicity, cloud condensation nuclei activity as well as microphysical and chemical properties of aerosols and clouds modifying earth-atmosphere radiative balance. Here, we proposed five possible reaction pathways through which the inorganic acids (H2SO4 and HNO3) could deplete chloride from sea-salt aerosols. We determined “maximum potential contribution” (MPC) of each acid and compared the MPC with actual chloride depletion. This step-by-step approach enables us to identify the most preferable reaction pathway(s) for coarse, superfine, accumulation and ultrafine aerosols over a Himalayan station (Darjeeling), a tropical urban station (Kolkata) and a tropical mangrove forest at the north-east coast of Bay of Bengal (Sundarban) in India. Over Kolkata and Darjeeling, locally generated acids reacted with transported sea-salts. Over Sundarban, the locally generated sea-salts from the Bay of Bengal reacted with the acids of biomass burning plume transported from Eastern Ghat and continental haze transported from upper Indo-Gangetic Plain. The average chloride depletion in PM10 ranged between 70 and 74% over Sundarban and 31–34% over Kolkata and Darjeeling. We observed that HNO3(g) depleted the larger (>1 μm) chlorides whereas H2SO4(g) depleted the smaller (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    4
    Citations
    NaN
    KQI
    []