Anisotropic transport and frictional properties of simulated clay-rich fault gouges
2020
Abstract. We aimed to evaluate various factors that control the frictional and transport properties of gouge-filled faults cutting carbonate-bearing shales or claystone formations. The research experimentally determined the effect of shear displacement, dynamic shearing, static holding, and effective normal stress on fault gouge permeability, both parallel and perpendicular to the fault boundaries, as well as on frictional behaviour. The simulated gouge was prepared from crushed Opalinus Claystone (OPA), on which we performed direct shear experiments. The direct-shear experiments (σneff = 5–50 MPa, Pf = 2 MPa, and T ≈ 20 °C) showed ~1 order of magnitude decrease in permeability with shear displacement (up to ~6 mm), for both along- and across-fault fluid flow orientation. Moreover, our data showed an initial, pre-shear permeability anisotropy of up to ~1 order of magnitude, which decreased with increasing shear displacement (maturity) to ~0.5, with the along-fault permeability being consistently higher. Our results have important implications for calcite-rich claystones and shale formations, and in particular any pre-existing faults therein, that seal hydrocarbon reservoirs and potential CO2 storage reservoirs, as the current results point to a higher leakage potential of pre-existing faults compared to the intact caprock.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
1
Citations
NaN
KQI