Study on degranulation of mast cells under C48/80 treatment by electroporation-assisted and ultrasound-assisted surface-enhanced Raman spectrascopy.

2022 
Abstract Both electroporation-assisted and ultrasound-assisted delivery methods can rapidly deliver nanoparticles into living cells for surface-enhanced Raman scattering (SERS) detection, but these two methods have never been compared. In this study, electroporation-assisted SERS and ultrasound-assisted SERS were employed to detect the biochemical changes of degranulated mast cells induced by mast cell stimulator (C48/80). The results showed that the cell damage of electroporation based on controllable electric pulse was smaller than that of ultrasound based on cavitation. Transmission electron microscope images of cells indicated that the nanoparticles delivered by electroporation were mainly distributed in the cytoplasm, while ultrasound could transport nanoparticles to the cytoplasm and nucleus. Therefore, electroporation-assisted SERS mainly detects the biochemical information of cytoplasm, while ultrasound-assisted SERS gets more spectral signals of nucleic acid. Both methods can obtain high quality SERS signal of cells. With drug treatment, the SERS peak intensity of 733 cm−1 attributed to phosphatidylserine decreased significantly, which may be due to the activation of mast cell degranulation pathway stimulated by C48/80 agonist, resulting in a large amount of intracellular serine being used to synthesize tryptase, while the production of phosphatidylserine decreased. Further, based on principal component analysis and linear discriminant analysis (PCA-LDA approach), ultrasound-assisted SERS could achieve better sensitivity, specificity and accuracy in the discrimination and identification of drug-treated degranulated mast cells than electroporation assisted SERS. This exploratory work is helpful to realize the real-time dynamic SERS detection of intracellular biochemical components, and it also has great potential in intracellular SERS analysis, such as the cytotoxicity assay of anti-tumor drugs or cancer cell screening.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []