ANANSE: An enhancer network-based computational approach for predicting key transcription factors in cell fate determination

2020 
Proper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. However, experimental elucidation of key transcription factors that drive cellular identity is often intractable. Here, we present ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory networks, and then predict key transcription factors controlling cell fate conversions using differential gene networks between cell types. Compared to other existing methods, ANANSE correctly predicts the highest number of transcription factors experimentally demonstrated to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at https://github.com/vanheeringen-lab/ANANSE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    165
    References
    1
    Citations
    NaN
    KQI
    []