Molecular Beam and Surface Science Studies of Heterogeneous Reaction Kinetics Including Combustion Dynamics. Final Technical Report.

2006 
This research program examined the heterogeneous reaction kinetics and reaction dynamics of surface chemical processes which are of direct relevance to efficient energy production, condensed phase reactions, and mateials growth including nanoscience objectives. We have had several notable scientific and technical successes. Illustrative highlights include: (1) a thorough study of how one can efficiently produce synthesis gas (SynGas) at relatively low Rh(111) catalyst temperatures via the reaction CH{sub4}+1/2 O{sub2} {r_arrow} CO+2H{sub2}. In these studies methane activation is accomplished utilizing high-kinetic energy reagents generated via supersonic molecular beams, (2) experiments which have incisively probed the partial oxidation chemistry of adsorbed 1- and 2- butene on Rh and ice, as well as partial oxidation of propene on Au; (3) investigation of structural changes which occur to the reconstructed (23x{radical}3)-Au(111) surface upon exposure to atomic oxygen, (4) a combined experimental and theoretical examination of the fundamental atomic-level rules which govern defect minimization during the formation of self-organizing stepped nanostructures, (5) the use of these relatively defect-free nanotemplates for growing silicon nanowires having atomically-dimensioned widths, (6) a combined scanning probe and atomic beam scattering study of how the presence of self-assembling organic overlayers interact with metallic supports substrates - this work hs led tomore » revision of the currently held view of how such adsorbates reconfigure surface structure at the atomic level, (7) an inelastic He atom scattering study in which we examined the effect of chain length on the low-energy vibrations of alkanethiol striped phase self-assembled monolayers on Au(111), yielding information on the forces that govern interfacial self-assembly, (8) a study of the vibrational properties of disordered films of SF{sub6} adsorbed on Au(111), and (9) a study of the activated chemistry and photochemistry of NO on NiO/Ni. Innovative STM and molecular beam instrumentation has been fabricated to enable this program.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []