Evaluation of laser weldability of 1800 and 1900 MPa boron steels

2016 
Ultrahigh strength steels are frequently used within the automotive industry. The driving force for use of these materials is to exchange thicker gauges to thinner and lighter structures. To get excellent strength and beneficial crash performance, the steel is microalloyed with boron which contributes to the 1500 MPa tensile strength. Increasing the carbon content will give superior tensile strength up to 2000 MPa. Welding of these components is traditionally done by resistance spot welding, but to get further productivity and increased stiffness of the structure, laser welding can be introduced. Welding of boron alloyed high strength steel is in general a stable and controlled process, but if increasing the carbon content quality issues such as cracking could possibly be a problem. In the present study, weldability of two different hardened boron steels with tensile strengths of 1800 and 1900 MPa, respectively, has been evaluated. Laser welding has been done in a lap joint configuration with 3.8–4.7 kW a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    7
    Citations
    NaN
    KQI
    []