Kinetics of flowing dispersions. X. Oscillations in optical properties of streaming suspensions of spheroids

1977 
Transients in angular light scattering and turbidity of dilute suspensions of nearly monodisperse spheroidal particles undergoing simple shear flow have been investigated by combining Rayleigh–Debye light scattering theory for single dielectric particles with fluid mechanical theory for the orientation distributions of particle assemblies in shear flow. Applying shear to an initially isotropic suspension causes the orientation distributions and thus the angular scattering coefficients to oscillate. Various geometrical arrangements are considered with a view to selecting those that will maximize such rheo-optical effects.By calculating the optical scattering cross section of a single particle, the turbidity of a suspension is obtained; like the scattering coefficient, it undergoes oscillations that are damped by (1) the inevitable spread in particle shape and volume in real systems, (2) shear-induced particle interactions, and (3) rotary Brownian motion. The rates of damping, expressed as relaxation times,...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    16
    Citations
    NaN
    KQI
    []