Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process

2019 
Abstract This work presents the treatment of selected emerging concern pharmaceuticals in real hospital wastewater (HWW) from Tumaco-Colombia by combination of a biological system with a sonochemical process. Fifteen compounds, commonly present in HWW, were considered: acetaminophen, diclofenac, carbamazepine, venlafaxine, loratadine, ciprofloxacin, norfloxacin, valsartan, irbesartan, sulfamethoxazole, trimethoprim, clarithromycin, azithromycin, erythromycin and clindamycin. Initially, HWW was characterized in terms of global parameters and the pharmaceuticals content. HWW contained a moderate amount of organic matter (i.e., total organic carbon: 131.56 mg L −1 (C)) mainly associated to biodegradable components. However, the most of pharmaceuticals were found at levels upper than their predicted no effect concentration (PNEC). Then, a conventional biological treatment was applied to the HWW. After 36 h, such process mainly removed biodegradable substances, but had a limited action on the pharmaceuticals. The resultant biotreated water was submitted to the sonochemical process (375 kHz and 88 W L −1 , 1.5 h), which due to its chemical (i.e., radical attacks) and physical (i.e., suspended solids disaggregation) effects induced a considerable pharmaceuticals degradation (pondered removal: 58.82%), demonstrating the complementarity of the proposed combination. Afterwards, Fe 2+ (5 ppm) and UVC light (4 W) were added to the sonochemical system (generating sono-photo-Fenton process), which significantly increased up to 82.86% the pondered pharmaceuticals removal. Subsequently, to understand fundamental aspects of the pharmaceuticals degradations, a model compound (norfloxacin) in distilled water was treated by sonochemical system, sono-photo-Fenton process and their sub-systems (i.e., sono-Fenton and UVC alone). This allowed proving the hydroxyl radical action in sonochemical treatment, plus the contribution of Fenton reaction and direct photodegradation in the pharmaceuticals removal by sono-photo-Fenton. Finally, it was found that 91.13% of the initial pharmaceuticals load in HWW was removed by the biological/sono-photo-Fenton combination. The high pollutants abatement evidenced that this combination is a powerful alternative for removing pharmaceuticals from complex-matrix waters, such as raw HWW.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    42
    Citations
    NaN
    KQI
    []