Methylation-reprogrammed AGTR1 results in increased vasoconstriction by angiotensin II in human umbilical cord vessel following in vitro fertilization-embryo transfer.
2019
Abstract Aims Assisted reproductive technologies (ART) have been widely used to treat infertility, which may impact on fetuses and offspring. This study investigated the effects of in vitro fertilization-embryo transfer (IVF-ET) on angiotensin II (AII)-mediated vasoconstrictions in umbilical cord vein, and explored possible reprogrammed methylation mechanism. Materials and methods Human umbilical cords were randomly divided into ordinary pregnancy and IVF-ET pregnancy. Vascular studies with AII as well as its specific receptor antagonists losartan and PD123,319 were conducted. Real-time quantitative PCR, Western blotting, and methylation analysis by bisulfite sequencing were performed with the cord vessel samples. Key findings In IVF-ET group, the maximal response to AII in umbilical vessels was significantly greater than that in the ordinary pregnancy. Using losartan and PD123,319, angiotensin receptor subtype 1 (AT1R) was found mainly responsible for the enhanced contraction in the umbilical vein of IVF-ET pregnancy. Decreased mRNA expression of DNMT3A was found in umbilical vein of IVF-ET group. Hypomethylation of the AGTR1 gene (gene encoding AT1R) in the umbilical veins of the IVF group was found. The data suggested that the IVF-ET treatments altered AII-mediated vasoconstrictions in umbilical veins, which could be partially attributed to the increased expression of AT1R. Significance The hypo-methylation of the AGTR1 gene caused by IVF-ET might play important roles in altered vasoconstrictions, impacting on cardiovascular systems in the long run.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
1
Citations
NaN
KQI