Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage

2015 
AbstractA weak aspect of the in vitro studies devoted to get information on the toxic, genotoxic and carcinogenic properties of nanomaterials is that they are usually conducted under acute-exposure and high-dose conditions. This makes difficult to extrapolate the results to human beings. To overcome this point, we have evaluated the cell transforming ability of cobalt nanoparticles (CoNPs) after long-term exposures (12 weeks) to sub-toxic doses (0.05 and 0.1 µg/mL). To get further information on whether CoNPs-induced oxidative DNA damage is relevant for CoNPs carcinogenesis, the cell lines selected for the study were the wild-type mouse embryonic fibroblast (MEF Ogg1+/+) and its isogenic Ogg1 knockout partner (MEF Ogg1−/−), unable to properly eliminate the 8-OH-dG lesions from DNA. Our initial short-term exposure experiments demonstrate that low doses of CoNPs are able to induce reactive oxygen species (ROS) and that MEF Ogg1−/− cells are more sensitive to CoNPs-induced acute toxicity and oxidative DNA da...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    43
    Citations
    NaN
    KQI
    []