Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS2-Carbon Nanotube Nanocomposite.
2021
The electrocatalytic performance of carbon paste electrode (CPE) modified with ferrocene-derivative (ethyl2-(4-ferrocenyl[1,2,3]triazol-1-yl)acetate), ionic liquid (n-hexyl-3-methylimidazolium hexafluorophosphate), and CoS2-carbon nanotube nanocomposite (EFTA/IL/CoS2-CNT/CPE) was investigated for the electrocatalytic detection of hydrazine. CoS2-CNT nanocomposite was characterized by field emission scanning electron microscopy, X-ray powder diffraction, and transmission electron microscopy. According to the results of cyclic voltammetry, the EFTA/IL/CoS2-CNT-integrated CPE has been accompanied by greater catalytic activities for hydrazine oxidation compared to the other electrodes in phosphate buffer solution at a pH 7.0 as a result of the synergistic impact of fused ferrocene-derivative, IL, and nanocomposite. The sensor responded linearly with increasing concentration of hydrazine from 0.03 to 500.0 μM with a higher sensitivity (0.073 μA μM-1) and lower limit of detection (LOD, 0.015 μM). Furthermore, reasonable reproducibility, lengthy stability, and excellent selectivity were also attained for the proposed sensor. Finally, EFTA/IL/CoS2-CNT/CPE was applied for the detection of hydrazine in water samples, and good recoveries varied from 96.7 to 103.0%.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
53
References
4
Citations
NaN
KQI