Low-density InP quantum dots embedded in Ga0.51In0.49P with high optical quality realized by a strain inducing layer

2010 
We present a method to reduce the intrinsically high InP quantum dot density embedded in a Ga0.51In0.49P barrier by introducing an InGaAs quantum dot seed layer. The additional strain reduces the total InP quantum dot density by around one order of magnitude from 2×1010 to 3×109 cm−2 but only ∼1% of the InP nanostructures seem to be optically active (107 cm−2). Therefore, microphotoluminescence measurements could be accomplished without masks. We found resolution-limited photoluminescence linewidths (ΔE<100 μeV), good signal-to-noise ratios (∼65), single-photon emission behavior [g(2)(τ=0)=0.3], and excitonic decay times of typically between 1 and 2 ns. Furthermore the structural quantum dot properties were investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    11
    Citations
    NaN
    KQI
    []