Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species

2014 
Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    12
    Citations
    NaN
    KQI
    []