Enhancing Effect of Waste Engine Oil Bottom Incorporation on the Performance of CR+SBS Modified Bitumen: A Sustainable and Environmentally-Friendly Solution for Wastes

2021 
Waste engine oil bottom (WEOB) is a hazardous waste whose effect as an additive to CR+SBS modified asphalt is rarely studied. In this study, the CR+SBS asphalt binder was modified with WEOB in different concentrations (3, 6, and 9 wt%). The GC–MS and FTIR were performed to evaluate the chemical compositions of WEOB and WEOBCR+SBS asphalt. The results showed that the main constituents of WEOB were similar to the functional groups of asphalt, along with maleic anhydride (MAH). Pavement performance-related rheological tests such as RV, temperature sweep (TS), FS, MSCR, and BBR were carried out. Results show that WEOBCR+SBS-6 exhibited the best high- and low-temperature property, followed by CR+SBS-3 and CR+SBS-9. Fluorescence microscope (FM) test, bar thin layer chromatograph (BTLC) test, FTIR, and AFM tests were carried out to evaluate the micro-morphologies and modification mechanism. The analysis revealed increased trends in resin fraction as opposed to asphaltene fraction with the increase of WEOB content. FTIR analysis revealed that the amide groups in WEOBCR+SBS asphalt bonded to the free radicals of CR. Moreover, a modification mechanism was elaborated. WEOB strengthens the cross-linked structure of CR+SBS polymers, reacting with SBS to graft onto MAH-g-SBS, and the free radical of CR interacts with the amide group in WEOB to form a bond. In addition, the content of lightweight components and surface roughness of SBS specimens were in good correlation, which contributed to the rutting resistance and adhesion and self-healing performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []