Laser Tracker Calibration - Testing the Angle Measurement System - 1

2008 
Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. Amore » test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    12
    Citations
    NaN
    KQI
    []