Simulating crop growth and biogeochemical fluxes in response to land management using the SALUS model

2015 
The Green Revolution, through the adoption of new crop varieties, irrigation, and agrochemicals, saved about 1 billion people from famine by increasing global food production (FAO 2011). We now recognize that these enormous gains in agricultural production were accompanied by harm to agriculture’s natural resource base, jeopardizing our future ability to meet human food, fuel, and fiber needs for a growing population. Earth’s population is projected to increase from ~7 billion in 2011 to ~9 billion in 2050. Given the future challenges to food production and environmental integrity, it is imperative that sustainable land management of agricultural production become an important priority for policy makers. Agricultural crop and soil management practices often cause degradation of the environment, especially the quality of ground and surface water and the fertility of agricultural soils. Clearly, a sustainable framework for developing and improving land use for crop production must be based on long-term and broad-based perspectives. Sustainable land management is the focus of many research programs, ranging from socioeconomic to ecological, since sustainability is an integrated concept with associated challenges. A multiplicity of factors can prevent production systems from being sustainable; the goals set by a sustainable crop production system may be in conflict with one another, and solutions that work in one site or region with a particular soil, climatic, and socioeconomic setting may not be appropriate in others (Robertson and Harwood 2013). On the other hand, with sufficient attention to indicators of sustainability, a number of practices and policies could be implemented to accelerate the adoption of sustainable practices. Indicators to quantify Basso, B. and J. T. Ritchie. 2015. Simulating crop growth and biogeochemical fluxes in response to land management using the SALUS model. Pages 252-274 in S. K. Hamilton, J. E. Doll, and G. P. Robertson, editors. The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford University Press, New York, New York, USA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    29
    Citations
    NaN
    KQI
    []