The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides

2006 
Antimicrobial peptides (AMPs) have been shown in animal and human systems to be effective natural antibiotics. However, it is unclear how they convey protection; they often appear inactive when assayed under culture conditions applied to synthetic antibiotics. This inactivation has been associated with loss of function in physiological concentrations of NaCl or serum. In this study we show that the balance of host ionic conditions dictate microbial sensitivity to AMPs. Carbonate is identified as the critical ionic factor present in mammalian tissues that imparts the ability of AMPs such as cathelicidins and defensins to kill at physiological NaCl concentrations. After adapting to carbonate-containing solutions, global changes occur in Staphylococcus aureus and Escherichia coli structure and gene expression despite no change in growth rate. Our findings show that changes in cell wall thickness and Sigma factor B expression correspond to the increased susceptibility to the AMP LL-37. These observations prov...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    152
    Citations
    NaN
    KQI
    []