Molecular dynamics simulations of nano-confined methanol and methanol-water mixtures between infinite graphite plates: Structure and dynamics

2019 
Molecular dynamics simulations are used to investigate microscopic structures and dynamics of methanol and methanol-water binary mixture films confined between hydrophobic infinite parallel graphite plate slits with widths, H, in the range of 7–20 A at 300 K. The initial geometric densities of the liquids were chosen to be the same as bulk methanol at the same temperature. For the two narrowest slit widths, two smaller initial densities were also considered. For the nano-confined system with H = 7 A and high pressure, a solid-like hexagonal arrangement of methanol molecules arranged perpendicular to the plates is observed which reflects the closest packing of the molecules and partially mirrors the structure of the underlying graphite structure. At lower pressures and for larger slit widths, in the contact layer, the methanol molecules prefer having the C–O bond oriented parallel to the walls. Layered structures of methanol parallel to the wall were observed, with contact layers and additional numbers of ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    2
    Citations
    NaN
    KQI
    []