Stereostructural Elucidation of Glucose Phosphorylationby Raman Optical Activity

2019 
Phosphorylation of glucose is the prime step in sugar metabolism and energy storage. Two key glucose phosphates are involved, that is, glucose 6-phosphate (G6P) and α-glucose 1-phosphate (αG1P). The chiral conformation of glucose, G6P, and αG1P plays an essential role in enzyme-mediated conversions. However, few techniques were able to give a direct view of the conformational changes from glucose to G6P and αG1P. Here, Raman optical activity (ROA) was used to elucidate the stereochemical evolution of glucose upon phosphorylation. ROA was found to be extremely sensitive to different phosphorylation sites. A characteristic ROA marker of (+)980 cm–1, originated from the phosphate group symmetric stretching vibration, is observed for αG1P with phosphorylation at chiral C1, while no corresponding ROA signal for G6P with phosphorylation at achiral C6 is observed. Phosphorylation-induced gauch–gauch (gg)/gauch–trans (gt) rotamer distribution changes can be sensitively probed by the sign of the ROA band around 14...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    3
    Citations
    NaN
    KQI
    []