Ethylenediaminetetraacetic acid mediated synthesis of palladium nanowire networks and their enhanced electrocatalytic performance for the hydrazine oxidation reaction

2015 
ABSTRACT Noble metal network nanostructures with three-dimensionally (3D) interconnected architectures are attracting much attention because of their unique catalytic, electrical, and optical properties. In this work, we report a facile ethylenediaminetetraacetic acid (EDTA) mediated chemical reduction route for the synthesis of high-quality palladium (Pd) nanowire networks (Pd-NWNWs). During the synthesis, EDTA interacts with PdCl 2 to generate EDTA-Pd II complex, which efficiently decreases the reduction potential of Pd II precursor. The slow reduction rate is crucial for the generation of Pd nanowires. The morphology, composition, and structure of Pd-NWNWs are fully investigated by various physical characterizations. The electrocatalytic activity of Pd-NWNWs for the hydrazine oxidation reaction (HOR) is also studied by cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry, etc . Compared to commercial Pd black, Pd-NWNWs exhibit remarkably improved electrocatalytic activity and stability for the HOR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    13
    Citations
    NaN
    KQI
    []