Identification of Key Residues Coordinating Functional Inhibition of P2X7 Receptors by Zinc and Copper

2007 
P2X 7 receptors are distinct from other ATP-gated P2X receptors in that they are potently inhibited by submicromolar concentrations of zinc and copper. The molecular basis for the strong functional inhibition by zinc and copper at this purinergic ionotropic receptor is controversial. We hypothesized that it involves a direct interaction of zinc and copper with residues in the ectodomain of the P2X 7 receptor. Fourteen potential metal interacting residues are conserved in the ectodomain of all mammalian P2X 7 receptors, none of which is homologous to previously identified sites in other P2X receptors shown to be important for functional potentiation by zinc. We introduced alanine substitutions into each of these residues, expressed wild-type and mutated receptors in human embryonic kidney 293 cells, and recorded resulting ATP and BzATP-evoked membrane currents. Agonist concentration-response curves were similar for all 12 functional mutant receptors. Alanine substitution at His 62 or Asp 197 strongly attenuated both zinc and copper inhibition, and the double mutant [H62A/D197A] mutant receptor was virtually insensitive to inhibition by zinc or copper. Thus, we conclude that zinc and copper inhibition is due to a direct interaction of these divalent cations with ectodomain residues of the P2X 7 receptor, primarily involving combined interaction with His 62 and Asp 197 residues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    57
    Citations
    NaN
    KQI
    []