Comparison of iterative solvers for electromagnetic analysis of plasmonic nanostructures using multiple surface integral equation formulations

2016 
The electromagnetic behavior of plasmonic structures can be predicted after discretizing and solving a linear system of equations, derived from a continuous surface integral equation (SIE) and the appropriate boundary conditions, using a method of moments (MoM) methodology. In realistic large-scale optical problems, a direct inversion of the SIE–MoM matrix cannot be performed due to its large size, and an iterative solver must be used instead. This paper investigates the performance of four iterative solvers (GMRES, TFQMR, CGS, and BICGSTAB) for five different SIE–MoM formulations (PMCHWT, JMCFIE, CTF, CNF, and MNMF). Moreover, under this plasmonic context, a set of suggested guidelines are provided to choose a suitable SIE formulation and iterative solver depending on the desired simulation error and available runtime resources.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    6
    Citations
    NaN
    KQI
    []