Photoconductive Laser Spectroscopy as a Method to Enhance Defect Spectral Signatures in Amorphous Oxide Semiconductor Thin-film Transistors

2019 
Defects in semiconductor thin-films often leave optical spectral signatures that can be used for their identification. In this letter, we report on spectrally resolved photoconductivity measurements of amorphous oxide semiconductor thin-film transistors. In contrast to previously reported photoconductive spectroscopy measurements recorded using spectrally filtered broadband light sources, we used a wavelength tunable picosecond laser to illuminate the thin-film. We extracted the absorption coefficient as a function of wavelength from the photocurrent measurement and showed that it followed the typical characteristic behaviour previously reported for amorphous oxide semiconductor thin-films. However, in addition, we observed several sharp spectral peaks in the photoconductivity spectrum which can be associated with sub-bandgap defects. These enhanced peaks are not normally visible in previously reported photoconductivity spectra. Furthermore, we show that we can control the sensitivity of our measurement b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    4
    Citations
    NaN
    KQI
    []