Aortic wall proteomic analysis in spontaneously hypertensive rats with a blood pressure decrease induced by 6‑week load‑free swimming

2015 
Decreased arterial compliance is one of the earliest detectable manifestations of adverse structural and functional changes within the vessel wall in hypertension. The proteomic approach is a powerful technique to analyze a complex mixture of proteins in various settings. Physical activity level was negatively associated with blood pressure. Sixteen 4-week-old male spontaneously hypertensive rats (SHR) and 16 Wistar-Kyoto (WKY) rats were randomly divided into four groups: i) SHR exercise group, ii) SHR rest group, iii) WKY exercise group and iv) WKY rest group. In the SHR and WKY exercise groups, rats were treated with a 6-week load-free swimming protocol (1 h/day, 5 days/week). The blood pressure of the rats was tested by the CODATM2 single non-invasive blood pressure measurement appliance. After the 6-week swimming protocol, the total aorta excluding abdominal aorta was extracted. The proteins were separated by two-dimensional gel electrophoresis and identified via LC-mass spectrometry (MS)/MS. After 6-week load-free swimming, blood pressure decreased in the SHRs. Compared with sedentary SHRs, 11 spots on the 2D-gel showed a significant difference in exercised SHRs. Nine of these were chosen for further identification. There were 5 upregulated proteins (long-chain specific acyl-CoA dehydrogenase, heat shock protein β-1, isocitrate dehydrogenase subunit α, actin, α cardiac muscle 1 preprotein and calmodulin isoform 2) and 4 downregulated proteins (adipocyte-type fatty acid-binding protein, tubulin β-2C chain, 78 kDa glucose-regulated protein precursor and mimecan). Proteomics is an effective method to identify the target proteins of exercise intervention for hypertension.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []