An aptamer-based magnetic flow cytometer using matched filtering

2020 
Facing unprecedented population-ageing, the management of noncommunicable diseases (NCDs) urgently needs a point-of-care (PoC) testing infrastructure. Magnetic flow cytometers are one such solution for rapid cancer cellular detection in a PoC setting. In this work, we report a giant magnetoresistive spin-valve (GMR SV) biosensor array with a multi-stripe sensor geometry and matched filtering to improve detection accuracy without compromising throughput. The carefully designed sensor geometry generates a characteristic signature when cells labeled with magnetic nanoparticles (MNPs) pass by thus enabling multi-parametric measurement like optical flow cytometers (FCMs). Enumeration and multi-parametric information were successfully measured across two decades of throughput. 10-μm polymer microspheres were used as a biomimetic model where MNPs and MNP-decorated polymer conjugates were flown over the GMR SV sensor array and detected with a signal-to-noise ratio (SNR) as low as 2.5 dB due to the processing gain afforded by the matched filtering. The performance was compared against optical observation, exhibiting a 92% detection efficiency. The system achieved a 95% counting accuracy for biomimetic models and 98% for aptamer-based pancreatic cancer cell detection. This system demonstrates the ability to perform reliable PoC diagnostics towards the benefit for NCD control plans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []