Functional expression and properties of the tRNA(Lys)-specific core anticodon nuclease encoded by Escherichia coli prrC.

1993 
Abstract Escherichia coli carrying the optional locus prr harbor a latent, tRNA(Lys)-specific anticodon nuclease, activated by the product of phage T4 stp. Anticodon nuclease latency is ascribed to the masking of prrC, implicated with the enzymatic activity, by flanking, type Ic DNA restriction modification genes (prrA, B&D-hsdM, S&R). Overexpression of plasmid-borne prrC elicited anticodon nuclease activity in uninfected E. coli. In vitro, the prr-C-coded core activity was indifferent to a synthetic Stp polypeptide, GTP, ATP, and endogenous DNA, effectors that synergistically activate the latent enzyme. Several facts suggested that PrrC is highly labile in the absence of the masking proteins. The core activity decayed with t1/2 below 1 min at 30 degrees C, and the PrrC portion of a fusion protein was unstable. Moreover, expression of prrC from its own promoter at low plasmid copy number did not allow detection of core activity. Yet, it sufficed for establishment of a latent, T4-inducible enzyme when complemented by the masking Hsd proteins, which were provided by another replicon. Interaction between the antagonistic components of latent anticodon nuclease was also demonstrated immunochemically. The coupling of anticodon nuclease with a DNA restriction modification system may serve to ward off its inadvertent toxicity and maintain it as an antiviral contingency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    26
    Citations
    NaN
    KQI
    []