Lab-Scale Model to Evaluate Odor and Gas Concentrations Emitted by Deep Bedded Pack Manure

2018 
A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs used in cattle mono-slope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and potential mitigation treatments that can improve air quality in commercial deep-bedded mono-slope facilities. The model is dynamic and allows researchers to easily collect many chemical and physical measurements from the bedded pack. Weekly measurements, collected over the course of six to seven weeks, allows sufficient time to see changes in air quality measurements over time as the bedded pack matures. The data collected from the simulated bedded packs is within the range of concentrations previously measured in commercial deep-bedded mono-slope facilities. Past studies have demonstrated that 8 - 10 experimental units per treatment are sufficient to detect statistical differences among the simulated bedded packs. The bedded packs are easy to maintain, requiring less than 10 minutes of labor per bedded packs per week to add urine, feces, and bedding. Sample collection using the gas sampling system requires 20 - 30 minutes per bedded pack, depending on the measurements that are being collected. The use of lab-scaled bedded packs allows the researcher to control variables such as temperature, humidity, and bedding source that are difficult or impossible to control in a research or commercial facility. While not a perfect simulation of "real-world" conditions, the simulated bedded packs serve as a good model for researchers to use to examine treatment differences among bedded packs. Several lab-scale studies can be conducted to eliminate possible treatments before trying them in a research or commercial-sized facility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []