Abstract 194: Characterization of Arrhythmogenic Dilated Cardiomyopathy Caused by Novel Filamin C Splice Variant in a Zebrafish Model

2015 
Although dilated cardiomyopathy (DCM) is a serious and frequent genetic cause of heart failure, only 30-40% of cases can be attributed to a known DCM gene mutation. To identify and confirm additional disease genes involved in DCM, we performed whole exome sequencing in two multigenerational families with DCM, both from the same geographic region of Italy, and found a novel splice variant in the gene encoding filamin-C (FLNC). Previously characterized mutations in FLNC had been primarily linked to skeletal muscle disease, although none of the affected family members displayed skeletal myopathy. To confirm and further characterize the arrhythmogenic DCM phenotype observed in family members, we performed embryonic knockdown experiments using morpholino (MO) treatment in zebrafish (Danio rerio) targeting the FLNC ortholog, filamin Cb (flncb). Following MO injection into 1-2 cell stage zebrafish embryos, 63.4% (78 of 123) of viable flncb MO-injected embryos displayed a cardiac phenotype at 72 hours post fertilization (hpf) (vs. 17.0% [30 of 177] of control MO-injected embryos; p≤0.001). Increases in mortality were observed, with 20.8% (54 of 260) of flncb MO-injected embryos surviving at 7 days post fertilization (vs. 65% [162 of 249] of control embryos; p≤0.001). The flncb MO-injected embryos demonstrated pericardial edema, dysmorphic or dilated cardiac chambers, and abnormal looping of the heart tube suggestive of systolic dysfunction. The flncb MO-injected embryos additionally demonstrated a lower mean stroke volume than controls (0.076 vs. 0.181 nl; p=0.015), a reduced mean cardiac output (10.8 vs. 25 nl/min; p=0.02), and an increase in the fraction of retrograde blood flow over the cardiac cycle (0.42 vs. 0.03; p=0.027). Overall, this flncb MO treatment recapitulated a DCM phenotype similar to the state caused by the human splicing variant, supporting haploinsufficiency as the mechanism leading to DCM in these families. Our findings suggest that approaches to augment endogenous filamin C protein levels may represent a viable treatment strategy that warrants exploration in future studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []