Heat and α1-adrenergic responsiveness in human skeletal muscle feed arteries: The role of nitric oxide

2012 
Increased local temperature exerts a sympatholytic effect on human skeletal muscle feed arteries. We hypothesized that this attenuated α1-adrenergic receptor responsiveness may be due to a temperature-induced increase in nitric oxide (NO) bioavailability, thereby reducing the impact of the α1-adrenergic receptor agonist phenylephrine (PE). Thirteen human skeletal muscle feed arteries were harvested, and wire myography was used to generate PE concentration-response curves at 37°C and 39°C, with and without the NO synthase (NOS) inhibitor NG-monomethyl-l-arginine (l-NMMA). A subset of arteries (n = 4) were exposed to 37°C or 39°C, and the protein content of endothelial NOS (eNOS) and α1-adrenergic receptors was determined by Western blot analysis. Additionally, cultured bovine endothelial cells were exposed to static or shear stress conditions at 37°C and 39°C and assayed for eNOS activation (phosphorylation at Ser1177), eNOS expression, and NO metabolites [nitrate + nitrite (NOx)]. Maximal PE-induced vasocontraction (PEmax) was lower at 39°C than at 37°C [39 ± 10 vs. 84 ± 30% maximal response to 100 mM KCl (KClmax)]. NO blockade restored vasocontraction at 39°C to that achieved at 37°C (80 ± 26% KClmax). Western blot analysis of the feed arteries revealed that heating increased eNOS protein, but not α1-adrenergic receptors. Heating of bovine endothelial cells resulted in greater shear stress-induced eNOS activation and NOx production. Together, these data reveal for the first time that, in human skeletal muscle feed arteries, NO blockade can restore the heat-attenuated α1-adrenergic receptor-mediated vasocontraction and implicate endothelium-derived NO bioavailability as a major contributor to heat-induced sympatholysis. Consequently, these findings highlight the important role of vasodilators in modulating the vascular response to vasoconstrictors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    29
    Citations
    NaN
    KQI
    []