Editorial Note for Antiretrovirals: New Drug Delivery Systems

2020 
Human Immunodeficiency Virus (HIV) is a retrovirus that causes irreversible destruction of the immune system, leading to the occurrence of opportunistic infections and malignancies. During the last decade, even though attempts were being made to eradicate HIV, it was found that eradication of HIV is highly unlikely, and effective antiretroviral therapy is required on a long-term basis to maintain viral suppression and reduce disease progression. During this decade, effective therapies aimed at continued suppression of HIV replication and targeted at resting HIV reservoirs such as brain, lymphatic systems will be critical to prolong survival and renewing hopes for a cure. Currently available antiHIV drugs can be classified into three categories: nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors and protease inhibitors. Most of these drugs bear some significant drawbacks such as relatively short half-life, low bioavailability, poor permeability and undesirable side effects. Efforts have been made to design drug delivery systems for antiHIV agents to: a) reduce the dosing frequency, b) increase the bioavailability and decrease the degradation/metabolism in the gastrointestinal tract, c) improve the CNS penetration and inhibit the CNS efflux, and d) deliver them to the target cells selectively with minimal side effects. This article is an attempt to compile all major research work towards drug delivery for AIDS therapy and channel future attempts in the area of more effective controlled delivery of antiHIV agents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []