Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets

2019 
We study the self-similarity and dissipation scalings of a turbulent planar jet and the theoretically implied mean flow scalings. Unlike turbulent wakes where such studies have already been carried out (Dairay et al. 2015 J. Fluid Mech. 781, 166198. (doi:10.1017/jfm.2015.493); Obligado et al. 2016 Phys. Rev. Fluids 1, 044409. (doi:10.1103/PhysRevFluids.1.044409)), this is a boundary-free turbulent shear flow where the local Reynolds number increases with distance from inlet. The TownsendGeorge theory revised by (Dairay et al. 2015 J. Fluid Mech. 781, 166198. (doi:10.1017/jfm.2015.493)) is applied to turbulent planar jets. Only a few profiles need to be self-similar in this theory. The self-similarity of mean flow, turbulence dissipation, turbulent kinetic energy and Reynolds stress profiles is supported by our experimental results from 18 to at least 54 nozzle sizes, the furthermost location investigated in this work. Furthermore, the non-equilibrium dissipation scaling found in turbulent wakes, decaying ...
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []