Variation in zinc release from surface coatings as a function of methodology

2021 
Abstract Over the last decade the growth of “nano-enabled” products have exploded in both industrial and direct to consumer applications. One area of interest is surface coatings, including paints, stains and sealants. Large scale applications of the products raise questions about both short- and long-term effects to both human and environmental health. Release of nanoparticles (NPs) from surfaces as a function of dermal contact is recognized as a potential human exposure route. Several standardized methods to quantify nanomaterial release have been previously used. In the current study, two standardized method were used to quantify the total mass of NPs released during sampling. ZnO (NPs) were used as a case study as they are commonly added to surface coatings to increase UV resistance. Particles were dispersed in Milli-Q water or a deck stain and applied to sanded plywood surfaces. Total release of Zn due to simulated dermal contact was evaluated using the Consumer Product Safety Commission (CPSC) and National Institute for Occupational Safety and Health (NIOSH) wipe methods. Additionally, three different sampling materials were tested. The total quantity of Zn released between the two methods was dependent upon the material used and how the ZnO was applied to the surface. Critically, less than 3% of the ZnO NPs applied to test surfaces was removed using either method. The results of this study demonstrate how different testing methodologies may result in varying estimates of human and environmental risk from NPs in surface coatings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []