Structure–Property Relationships Directing Transport and Charge Separation in Isoindigo Polymers

2016 
Since being introduced to the open literature in 2010, the isoindigo heterocycle has been extensively studied as a novel electron-deficient building block for organic electronic materials in conjugated polymers, discrete length oligomers, and molecular systems, particularly targeting high charge mobility values and ambipolar transport in organic field effect transistors, along with high power conversion efficiencies in organic photovoltaic devices. This article introduces results obtained on copolymers of isoindigo with thiophene and alkylated terthiophenes to highlight fundamental characteristics in isoindigo-based polymers and the resulting organic field-effect transistors and photovoltaic devices. By comparing and contrasting the optoelectronic properties, thin film morphology, organic field-effect transistor (OFET) mobilities, and organic photovoltaic (OPV) performance to previously reported polymers, structure–processing–property relationships were uncovered. In particular, isoindigo-containing polym...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    33
    Citations
    NaN
    KQI
    []