Potential Energy Surface Calculations of Alanine Dipeptide using BVWN Density Functional Approach and 6-311G Basis Set

2009 
This work is devoted to a study of the conformational properties of alanine dipeptide. We have studied potential energy surfaces of alanine dipeptide molecule using density functional theoretical approach with 6-311G basis set. For this purpose potential energies of this molecule are calculated as a function of Ramachandran angles φ and ψ, which are important factors for the characterizations of polypeptide chains. These degrees of freedoms φ and ψ are important for the characterization of protein folding systems. Stable conformations, energy barriers and reaction coordinates of this important dipeptide molecule are calculated. Energy required for the transition of one conformation into other are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []