Bis(α-diimine)iron Complexes: Electronic Structure Determination by Spectroscopy and Broken Symmetry Density Functional Theoretical Calculations

2008 
The electronic structure of a family comprising tetrahedral (α-diimine)iron dichloride, and tetrahedral bis(α-diimine)iron compounds has been investigated by Mossbauer spectroscopy, magnetic susceptibility measurements, and X-ray crystallography. In addition, broken-symmetry density functional theoretical (B3LYP) calculations have been performed. A detailed understanding of the electronic structure of these complexes has been obtained. A paramagnetic (S_t = 2), tetrahedral complex [Fe^(II)(^4L)_2], where (^4L)^(1−) represents the diamagnetic monoanion N-tert-butylquinolinylamide, has been synthesized and characterized to serve as a benchmark for a Werner-type complex containing a tetrahedral Fe^(II)N_4 geometry and a single high-spin ferrous ion. In contrast to the most commonly used description of the electronic structure of bis(α-diimine)iron(0) complexes as low-valent iron(0) species with two neutral α-diimine ligands, it is established here that they are, in fact, complexes containing two (α-diiminato)^(1−•) π radical monoanions and a high-spin ferrous ion (in tetrahedral N_4 geometry) (S_(Fe) = 2). Intramolecular antiferromagnetic coupling between the π radical ligands (S_(rad) = 1/2) and the ferrous ion (S_(Fe) = 2) yields the observed S_t = 1 ground state. The study confirms that α-diimines are redox noninnocent ligands with an energetically low-lying antibonding π^* lowest unoccupied molecular orbital which can accept one or two electrons from a transition metal ion. The (α-diimine)FeCl_2 complexes (St = 2) are shown to contain a neutral α-diimine ligand, a high spin ferrous ion, and two chloride ligands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    80
    Citations
    NaN
    KQI
    []